
cloy

GL-TR-89-0309

A Mathematical Appreciation of Antonio Marussi's Contributions
to Geodesy

J.D. Zund

New Mexico State University
Department of Mathematical Sciences
Las Cruces, NM 88003-0001

November 20, 1989

Scientific Report No. 2

APPROVED FOR PUBLIC RELEASE; DISTRIBUTIOW UM IMITED

DTIC
GEOPHYSICS LABORATORY
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE 03
HANSCOM AIR FORCE BASE, MASSACHUSSETTS 01731-5000

( !.



"This technical report has been reviewed and is approved for publication"

tSignature) (Signature)
CHRISTOPHER JEKELI THOMAS ROONEY
Contract Manager Branch Chief

FOR THE COMMANDER

(Signature)
DONALD H. ECKHARDT
Division Director

This report has been reviewed by the ESD Public Affairs Office (PA) and is
releasable to the National Technical Information Service (NTIS).

Qualified requestors may obtain additional copies from the Defense Technical
Information Center. All others should apply to the National Technical
Information Service.

If your address has changed, or if you wish to be removed from the mailing
list, or if the addressee is no longer employed by your organization, please
notify GL/IMA, Hanscom AFB, MA 01731. This will assist us in maintaining
a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific document requires that it be returned.



form Approved
REPORT DOCUMENTATION PAGE OMB N 07040188

C'. Pn -C'~ I ' I Ofl 0 0"3rfrt- I V-t.40 T 4.0' 1 e1 De, '.%0 e 1, A..nq I?,ne 'e r.ownj n$tr,.r.:nS sea, - .. St vg data %OurCS

OI'ect~of 2, d0-~~? : -Jan uggest,011 41. -.1uon th-$ 0,fo0 .t r.qo "acata,%' 'sefes D,.ec.oate , U ''natr O~e, n .?fd~ 0C1% 12, 5 efferson
Oavs .j " .9 A. S.. i '2C4 7 .',.,3 tOn. VA 12202 4301 and to th. Of', of Man,.e n 'n Bud ge!' PW -e'O( . R e don Project (C1C4-0188) Wa$ington ZC 2050)

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
20 November 1989 Scientific Report No. 2

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

A M-athematical Appreciation of Antonio arussi' s 61102F
Contribut ion to Geodesy 2309G IBZ

6. AUTHOR(S) Contr;ict F19628-89-K-004/

J. D. Zund

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

New Mexico State University

Department of Mathematical Sciences

Las Cruces, NM 88003-0001

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

Geophysics Laboratory

Hanscom AFB

Massachusetts 01731-5000 CL-TR-89-0309

Contract Manager: Christopher Iekeli/LWG

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited

13. ABSTRACT (Maximum 200 words)

This report contains an appreciation of the contribution of A. Marussi to

geodesy. it includes a discussion of his notion of intrinsic geodesy, his

mathematical methods, and an introduction to the Marussi Hypothesis.

14. SUBJECT TERMS 15 NUMBER OF PAGES

A. Marussi, intrinsic geodesy, Marussi Hypothesis 16. PRICE CODE26

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19, SECURITY CLASSIFICATION 20 LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified

0JSN 754001280-55O00 cardad o,- 298 (Rev 2 89)



CONTENTS

Page

Preface................................................................ 1I

1. Introduction ...................................................... 2

2. The Mathematical and Geodetic Background of Marussi..................3

3. The Notion of Intrinsic Geodesy....................................S5

4. Marussi's Mathematical Methods..................................... 11

5. Marussi's Intrinsic Geodesy from the
Viewpoint of Contemporaty Differential Geodesy .................... 15

Acknowledgements...................................................... 19

References............................................................ 21

Accession For

1 ion



Preface

The following manuscript is based on a presentation made at the Marussi

Comemorazione, or Geodetic Day, at the Accademia dei Lincei in Rome on

October 9, 1989. It is the custom of the Accademia to honor its most

distinguished members approximately five years after their death with such a

commemorative session. The session was organized by Fernando Sans6 and

Michele Caputo, and the President of the Accademia Edoardo Amaldi. It

consisted of nine invited speakers, and the program was as follows:

J.D. Zund (United States):
"The Scientific Work of A. Marussi;"

F. Bocchio (Italy):
"Geometry, Topology, and the Gravity Field;"

H. Moritz (Austria):
"The Equilibrium Figure of the Earth;"

M. Caputo (Italy):
"Rheology and Geodynamics;"

E. Grafarend (Federal Republic of Germany):
"Relativistic Geodesy;"

F. Sans6 (Italy):
"The Boundary Value Problems of Geodesy;"

T. Krarup (Denmark):
"Approximating the Functionals of the Gravity Field;"

R. Runmel (The Netherlands):
"The Gravity Field Measured from Space;"

E. Livieratos (Greece):

"Geodesy and Geodynamics."

Due to the number of speakers, each presentation was limited to thirty-forty

minutes, and since my talk was an abbreviated version of the prepared

manuscript, I have reverted in this report to my original title. It is

conceivable, but by no means certain at this time, that the Accademia dei

Lincei may eventually publish the proceedings of the Marussi Commemorazione.



Although much of my presentation was intended to be historical, and an

appreciation of Marussi's contributions to mathematical geodesy, Sections 2

and 5 contain an introduction to his notion of intrinsic geodesy and the

Marussi Hypothesis. The latter is the principal topic of my research contract

with the Geophysical Laboratory, and this presentation was my first discussion

of this material. At the Fall Meeting of the American Geophysical Society

(San Francisco, December 6, 1989) I presented an abstract, "The Marussi

Hypothesis in Differential Geodesy," which will also deal with the material in

Sections 3 and 5 of this report.

1. Introduction.

A great master of modern geodesy passed away when Antonio Marussi died in

Trieste on April 24, 1984 at the age of seventy-six. Marussi not only

enriched geodesy by his conception of intrinsic geodesy, but he also impressed

the spirit of his genius and youthful vigor on the entire subject of

theoretical geodesy. His vision and enthusiasm fired the imagination of

Martin Hotine (1898-1968), and together they formulated the Marussi-Hotine

approach to geodesy. Although today this is only one aspect of research in

geodesy, it is impossible to think of mathematical geodesy without immediately

bringing to mind these two great men and the theory they labored to perfect.

In Marussi's case this is even more remarkable, when we recognize that his

contributions to geodesy are but one aspect of his creativity which freely

ranged over the broader field of geophysics. As Sir Alan Cook wrote in his

tribute in [1], truly

"Antonio Marussi bestrode the world like a colossus."

In this lecture, we present a mathematical appreciation of Marussi's

contributions to geodesy. First, we consider his mathematical and geodetic

background, and then his conception of intrinsic geodesy which we regard as
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his most important and lasting contribution to geodesy. We then discuss the

mathematical methods he employed in the formulation of his ideas, and how his

work stands today from the standpoint of differential geodesy.

2. The Mathematical and Geodetic Background of Marussi.

Marussi was born in Trieste and all of his life he was deeply attached to

this city and its rich cultural, ethnic, and historical heritage. As a

student there he attended the Scuola Scientifica Galileo Galilei where he

excelled in his study of mathematics. His university studies began at the

Istituto Politecnico di Milano (1926) where he initially intended to become an

engineer. However, during his first year of study there his interests were

shifted to mathematics by Oscar Chisini (1889-1967) whose lectures on analytic

and projective geometry caused him to 'fall in love with geometry.' These

mathematical interests were further stimulated by the lectures of Bruno Finzi

(1899-1974) on calculus and algebra. Marussi then transferred to the

Universita di Bologna, where he pursued his mathematical studies from 1927 to

1931. The Bologna school was led by a Triestino, Salvadore Pincherle

(1853-1936), who was both a dynamic researcher and teacher. Marussi took many

courses from Pincherle and was deeply influenced by his teaching as well as by

his aesthetic and cultural interests. Among the many mathematical luminaries

in Bologna were Leonida Tonelli (1885-1946), Giuseppe Vitali (1875-1932), Enea

Bortolotti (1896-1942), and Pietro Burgatti (1868-1938). There is no doubt

that Marussi received a first-class mathematical education in Bologna. He

completed his studies with a Tesi di laurea in pure mathematics: I sistemi

d'equaztor nle derilate awrziaIli cnmpnnsti di froitr eqIen7ioii qeante ftirizio1if

ricognite (July 1931) written undpr Vitali's direction. The thesis dealt with

a difficult question in the Riquier-Janet theory of systems of partial

differential equations and the attempt to analyze the system of
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characteristics defined by them. Essentially it consisted of a sequence of

observations on the analytic difficulties, and suggestions for remedying them.

It was not published, and even today many questions in the Riquier-Janet

theory remain unanswered.

Although the thesis was a creditable piece of research, with Vitali's

premature death, it was probably wise on Marussi's part that he did not choose

to continue a mathematical career in this area. It was not onp which was ripe

for a breakthrough, or one in which someone could readily establish a

reputation. Moreover, it had only a tenuous connection with geometry, and

while one might well imagine Marussi becoming a professional geometer it was

probably not in his temperament to embark on a career devoted to proving

delicate and difficult existence and uniqueness theorems. In retrospect, he

was probably as grateful as we are that he did not pursue a career in pure

mathematics.

Upon graduation, Marussi had two passions: mathematics (i.e., geometry)

and mountains (i.e., mountaineering). One evening, while crossing the Piazza

dell'UnitA d'Italia in Trieste, he met a friend from his alpine group who told

him of an advertisement for a position as a geographical engineer at the

Istituto Geografico Militare (I.G.M.) in Firenze. This seemed ideal to him

since it would combine his fascination for maps, viz geometry in the guise of

cartography, with mountains, since a new survey of the Alps was being planned.

Thus, he began his long and fruitful association with the I.G.M., which, apart

from brief interruptions for military service and work as an actuary at the

Assicurazioni Generali in Trieste, was to lead him to surveys in Ethiopia in

1J36 and during the later war years in Albania and Greece. He remained at the

I.G.M. until 1952 when he accepted a position at the Universita di Trieste as

Professor of Geodesy and Geophysics and founder (and for many years the

director) of the Istituto di Geodesia e Geofisica at this university.
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Marussi's association with the I.G.M. gave him valuable practical

experience which gradually led him from surveying and applied cartography to

geodesy. As he told Ian Reilly (in a taped interview in 1982)

"I come from practical surveying, and this is of great importance

to my career; and I can see both the problems of the practical

surveyor and the cartographer, and the theoretical man that wishes

to have the ideas absolutely clear. I am very grateful for what I

have learned in practical surveying, and this gives me an idea of

what practical work means."

When he came to the I.G.M. he had no formal training in surveying,

cartography, or geodesy. He embarked on an extensive program of self-study

which included the classical texts of Helmert and Jordan-Eggert. As he later

was to tell Reilly (loc. cit. supra) in geodesy he was 'a self-made man

totally.' As his studies progressed he came across the papers of Corradino

Mineo (1875-1960) which 'positively influenced' his line of thought.

Marussi's ideas on geodesy required a fifteen year period of gestation and did

not appear in print until he was almost forty years old. Curiously enough,

Mineo became a vociferous critic of intrinsic geodesy in his later years,

despite Marussi's acknowledgement of his debt to him.

3. The Notion of Intrinsic Geodesy.

In his study of the geodetic literature, Marussi found many concepts and

relations, such as that between the geoid and the ellipsoid of reference, to

be unclear and unsatisfying. He also felt the usual two-dimensional treatment

of geodesy to be both artificial and unnatural. Guided by his practical

experience and his pure mathematical training, he set out to remedy these

deficiencies and he sought a unified point of view which would provide a

rational foundation for geodesy. As the American theoretical physicist J.W.
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Gibbs (1881) wrote

"One of the principal objects of theoretical research in any

department of knowledge is to find the point of view from which the

subject appears in its greatest simplicity."

From his love of geometry, Marussi naturally found this point of view. He

discovered that the traditional definition of H. Bruns (1878) and F. Helmert

(1880) that geodesy was

"... the science of the measurement and mapping of the Earth's

surface,"

could be reformulated by regarding

"Geodesy is the science which is devoted to the study of the

Earth's gravity field."

Thus, when the gravity field of the Earth is described in potential-theoretic

terms, geodesy is merged with the differential geometry of the equipotential

surfaces of the Earth's gravity field. However, it is more than merely

differential geometry since it involves reconciling purely mathematical

quantities with the process of doing geodetic measurements on and between the

equipotential surfaces. In effect such a procedure seeks to enhance the

physical description of the gravity field by attempting to recast it in

geometric terms.

In formulating his approach to geodesy Marussi made a number of basic

assumptions which we state as follows:

(i) the geometry of space is Euclidean and three-dimensional;

(ii) the equipotential surfaces of the Earth's gravity field are locally

isometrically imbedded in a three-dimensional Euclidean space;

(iii) the choice of reference systems should be natural and not

contrived;
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(iv) the reference systems should involve no additional hypotheses or

otherwise impose any loss of generality in our description of the

gravity field;

(v) the reference systems employed in the analysis must be susceptible

of an immediate physical interpretation;

(vi) the components of all vectors/tensors occurring in the theory

should be readily measurable;

(vii) the domain of the reference systems must be sufficiently large to

be useful, viz to allow one to make measurements and give a

description of the gravity field in a required vicinity;

(viii) the donains of various reference systems should be continuable, or

extendable, in the sense that they are compatible and one can

readily pass between neighboring systems of reference.

We have stated these requirements in a form which is slightly more

general than that given by Marussi. originally he assumed that the reference

systems were coordinate systems, but later he extended them to include systems

of linearly independent vectors, i.e. the leg systems in the terminology of

E.W. Grafarend (1986). The requirements (i) and (ii) were implicit in his

mathematical formulation of his theory, and (iii) is the origin of his term

'intrinsic.' Requirements (iv)-(vi) constituted his basic physical

assumptions, while (vii) and (viii) were implicit in his considerations. In

practice, not all of these requirements are rigorously satisfiable, but in

order of importance -- after (i) and (ii) -- the requirements (iii) and (iv)

were crucial and it was assumed that such systems e'ist and that (iii) and

(iv) would expedite the fulfillment of (v) and (vi). Requirements (vii) and

(viii) are highly desirable, however, they clearly depend on the physical

situation under consideration. Note that (vii) and (viii) are reminiscent of

the conditions occurring for coordinate neighborhoods of a differentiable
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manifold except that no differentiability, i.e. smoothness, conditions were

imposed.

Needless to say, Marussi only partially succeeded in demonstrating that

in practice all these requirements could be rigorously satisfied. Indeed,

rather than rigid requirements, he probably regarded them as being guidelines

for choosing reference systems. No one has done any better in this respect,

and few have done as well. Almost thirty years later N. Grossman (1979)

observed that

"The predominant view is that space near the Earth is a manifold.

The unpleasant fact of life is that no one has ever described a

method for coordinatizing that supposed manifold in a way consonant

with physical reality."

Thus, the above requirements are highly non-trivial and intended to yield

not only an aesthetically pleasing mathematical theory, but also a physical

theory in which measurements can be made and interpreted. They are remarkable

for their bold synthesis of geometric and physical requirements. Individually

each is obvious, but taken together it is less than obvious that, possibly

apart from Newtonian dynamics, they are ever rigorously satisfiable in

practice. In effect, they ask for a physical theory which deals only with

physically measurable quantities! However, if it is granted that Newtonian

dynamics comes close to satisfying them, then a merger of it with the

Newtonian theory of gravitation (when reformulated in potential-theoretical

terms) and recast in a geometric setting, offers us a reasonable hope for

success. This was precisely what Marussi offered us in his formulation of

geodesy. In effect, it was a microcosm of what a physical theory might be if

we could only achieve it. In this sense, if geometry is regarded as the most

perfect of the mathematical sciences, then geodesy satisfying Marussi's

requirements would play an analogous role in the physical sciences.
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For purposes of discussion we will refer to Marussi's original theory as

intrinsic geodesy, and reserve the term diffcrential geodesy for a more

general theory. Thus, intrinsic geodesy is a coordinate-based theory in which

intrinsic coordinates play the primary role. On the other hand, differential

geodesy deals with leg systems, or exterior differential forms, and includes

intrinsic geodesy when the leg vectors coincide with the coordinate axes. In

differential geodesy coordinates need not be of primary interest, and the

resolutions of vectors/tensors in an appropriate leg system are the

significant quantities. A simple example of such a situation is given by

considering the motion of a particle along a space curve C. One takes the

leg system to be the Frenet leg consisting of the tangent t, the principal

normal n and the binormal b of C. Then relative to this 3-leg, the

velocity v has the leg components:

vt = 1), v = 0, vb = 0;

and analogously for the accelerntioni a = v and jerh j = a, we have

2

a = , a = i, , ab = 0 ;
Jt t Jn3,, +2 ,J r ;

here v is the speed, the dot denotes differentiation with respect to time,

and K, T are the curvature, torsion of C.

Marussi first presented his intrinsic geodesy in [2) which was probably

the basis of his presentation to the General Assembly of the International

Association of Geodesy in Oslo in 1948. It was given in Section V - The

Geoid, under the Presidency of J. de Graaf-Hunter, with G. Bomford serving as

Secretary. In retrospect, it was an all star program which also included

presentations by Bomford and de Graaf-Hunter (both of Great Britain), W.

Heiskanen (Finland), F.A. Vening Meinesz (The Netherlands) and A. Prey, K.
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Mader (Austria). Later Bomford gave the following report of Marussi's

presentation:

"Professor A. Marussi gave a summary of his Foridements de

g~omttrie diff ,-itielle a sol, e du chlnm) poterittel terresti"e.

This paper gives an account of the possible application of the

methods of vector analysis to the study of the earth's

gravitational field and of the simplications which may be derived

from its use. It concludes that the most useful programme of work

would be to make such observations of gravity, the deviations of

the vertical, and their gradients, as can best determine the second

derivatives of the potential at intervals of (say) 10 minutes of

latitude and longitude over a large area."

While this is probably a fair assessment of its content, it is clear that

Bomford did not recognize, or appreciate, the revolutionary aspects of

Marussi's appraoch. Indeed it is possibly noteworthy, that Bomford never

included any of Marussi's publications in the extensive bibliography of

various editions of his celebrated book (1952-1980). Nevertheless, and

despite his comment to Reilly (loc. cit. supra) that

"... nobody followed it, but it was my fault since my symbols

(i.e., his vectorial and tensorial methods) were not commonly

understood,"

it was a significant occasion. It was at this meeting that he met Martin

Hotine. In an obituary notice on Hotine, [3), Marussi wrote

"... Martin said he understood only very little about it, but that

it broke with crystallized tradition and that it must therefore be

important."

1Bulletin GLodesique, April 1949, 75-77.
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The Oslo lecture was followed by a veritable flurry of publications: a

conference in Trieste (4]; a more substantial version [5] and a precis of the

theory (6] both appearing in Buleteiin Ceodesiqiie. In toto, Marussi published

eight papers related to intrinsic geodesy in 1950, and this was followed by

about a half-dozen papers during each of the years 1951, 1952, and 1953. The

most significant of these are re-printed in [1], and these include his

monumental (7] which he personally regarded as his definitive exposition of

intrinsic geodesy. Of particular interest is the report, [8], which is based

on lectures given in the United States in 1951-52. These are noteworthy since

they present not only an overview of his work during the peak of his geodetic

activity, but also the most detailed treatment of his mathematical methods

which were essentially assumed hnnuin in his more formal publications.

Ultimately Marussi wrote about fifty papers (slightly under half of his

publications) on topics related to intrinsic geodesy. In addition to laying

out the fundamentals of his theory, he pioneered new developments in the

theory of conformal mapping of the gravity field and between surfaces, the

propagation of light in continuous isotropic refracting media, and questions

dealing with satellite geodesy. A complete analysis of these contributions is

beyond the scope of this lecture, and we must content ourselves to referring

the reader to (1] where most of these studies appear.

4. Marussi's Mathematical Methods.

We now come to the methods of how Marussi chose to mathematically

formulate his intrinsic geodesy. Such methods necessarily involve a formalism

capable of handling the classical differential geometry of curves and surfaces

in a three-dimensional Euclidean space. The obvious choice is to employ some

form of vector/tensor calculus, and actually Marussi used both vectors and

tensors. However, the precise variants of these methods which he employed
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were unusual and did not tend to make his theory transparent even to those

goedesists who had some prior knowledge of vectors and tensors. In order to

understood his methods and motivation in choosing them, it is necessary to

make a brief digression into the historical development of the calculus of

vectors and tensors.

The theory of vectors essentially arose as a byproduct of the work of two

men: W.R. Hamilton (1805-1863) and H. Grassmann (1809-1877). Both of them

wrote weighty and almost unreadable treatises which included vectors as

special cases of quaternioris and eyte nsite mtgni tudes respectively.

Surprisingly enough, they both attracted small, but vocal, groups of

enthusiastic partisans who saw in these theories an ideal formalism for

handling problems arising in the physical sciences. While both theories were

truly remarkable for their mathematical richness (Hamilton's theory involved a

general theory of linear operators, whereas that of Grassmann contained his

exterior algebra and tensors) neither won widespread support from physicists.

In the early 1880's, J.W. Gibbs (1a39-1903) and 0. Heaviside (1850-1925)

independently succeeded in extracting from these theories, a simple and easily

learned theory of vectors which constitutes what we now call tector- calculus.

Moreover, they immediately demonstrated the utility of their theory in

Newtonian dynamics and Maxwellian electrodynamics. Physicists were gradually

attracted to this new calculus; however, the supporters of Hamilton and

Grassmann were appalled at what they regarded as a cannibalization of their

work. A thirty year war was fought over which theory was superior, and it is

one of the most fascinating chapters in the history of mathematics. In 1859

Hamilton wrote to his disciple P.G. Tait (1831-1901):

"Could anything be simpler and more satisfactory? Don't you feel

as well as think, that we are on the ,-iqht trach, and shall be

tha kied hereafter? Never mind when."
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Later Tait denounced the Gibbs-Heaviside theory as a 'hermaphrodite monster.'

On the other side, in 1892, Heaviside countered that

"Quaternions furnishes a uniquely simple and natural way of

treating qsaternfinns. Observe the emphasis."

By the turn of the century this Kampf ums Daseirt came to an end with the

death of the most combative quaternionists, and the Gibbs-Heaviside theory won

the day. In retrospect, both camps were partially correct: the Gibbs-

Heaviside theory is mathematically unsatisfying despite its utility. It is

Cartesian, three-dimensional, and literally nothing more than a convenient set

of computational rules. On the other hand despite its mathematical richness,

quaternions are cumbersome and, in contrast to vectors, are essentially

'unphysical' quantities.

After the years of controversy the last thing most people wanted was a

new and more mathematically sound vectorial formalism. However, this is

precisely what was proposed by two ingenious Italians: the mathematician C.

Burali-Forti (1861-1931) and the physicist R. Marcolongo (1862-1943). In

1912-13 they produced a two volume Anolse uectorielle gerlrale, and

ultimately they intendea a multi-volume encyclopedic treatise Anadist

itettoriale generale e applicazioii 1929-1930 which was not completed. The

latter was written in collaboration with one of Marussi's Bologna professors,

Pietro Burgatti, and Tommaso Boggio (1877-1963). The Burali-Forti and

Marcolongo theory, which is more commonly known as the homoqral@itc colcultis,

was a mathematically elegant theory which reformulated the Gibbs-Heaviside

vector calculus along quaternionic lines and uithotit the 017 irntio intrusion

of Cartesian notions. It was controversial -- partially due to the sharp

tongue of Burali-Forti -- and even in the country of its origin it attracted

few practitioners. However, Marussi learned it from Burgatti, and attracted

by its elegance chose it as the ideal method for presenting his ideas on
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intrinsic geodesy. We will return to a discussion and vindication of this

choice in S4. However, to many geodesists of his time, including Mineo, this

choice was not met with enthusiasm.

As explained, in Chapter 1 of [8], Marussi made a sharp distinction

between absolute and relative entities. The former makes no use of

coordinates, whereas the latter characterizes entities totally in terms of

coordinates and invariance properties under change of coordinate systems. we

will refer to the viewpoints as being absolutist and relatutvist in our

discussion.

Having chosen the absolutist approach for vectors, Marussi naturally

sought an analogous approach for tensors. The classical approach of G.

Ricci-Curbastro (1853-1925) and T. Levi-Civit.A (1873-1941) to tensors was

purely relativist, and in effect a complete absolutist theory of tensors did

not exist. Marussi's solution was to adopt a provisional absolutist approach

which was derived under the influence of the great French geometer E. Cartan

(1869-1951) and presented in a little known monograph L.ecous sur le calcul

uectoriel (Blanchard, Paris 1930) of T. Ramos. Cartan had outlined the

rudiments of such a viewpoint in the beginning chapters of his Le4ons sur In

geometrte des espaces de Ri emaun (Gauthier-Villars, Paris 1928) as a

preliminary to his theory of exterior differential forms; however, Marussi

made no use of the theory of differential forms. Unfortunately, even Cartan's

approach was not well understood for many years and, without it being well-

known, Marussi's tensorial methods appeared to many geodesists to be casual at

best, and imprecise at worst.

It is ironic that, although, as we will see in §4, Marussi's choice of

mathematical methods were based on sound and logical grounds, his vectorial

methods were not understood because they were 'Italian', and a similar fate

was suffered by his tensorial methods since they were 'non-Italian.' The net
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result was that Marussi's seminal ideas on intrinsic geodesy were formulated

in a manner which failed to make them immediately comprehensible to his

colleagues. Likewise, the matter was not helped by the fact that his most

extensive presentation of his theory, i.e. [71, was written in Italian and

published in an occasional series of memoirs which enjoyed a limited

circulation.

5. Marussi's intrinsic geodesy from the viewpoint of contemporary
differential geodesy.

In the previous section we have seen that Marussi's mathematical methods

were unusual and did not lend themselves to an immediate acceptance of his

theory. We now ask why he stubbornly held to them even long after it was

clear to him that people found them difficult. It would be tempting to

conclude that it was simply a matter of habit, nationalism, or perversity on

his part, but upon examination none of these ring true. Moreover, he seemed

content to follow his own way and as his introductory remarks in (1] reveal,

he was generous in his praise of his younger colleagues, only one of whom ever

used the homographic calculus.

The real -- and we think the convincing -- answer was that Marussi

believed that the absolutist viewpoint was correct both aesthetically and

conceptually even though it provided him only with a provisional theory of

tensors. Although he freely employed coordinates in his work, indeed

intrinsic geodesy is predicated on the existence of intrinsic coordinates, he

felt that the basic concepts should be formulated ivithout the use of

coordinates. This is, of course, the classical geometric view in which

synthetic geometry precedes analytic geometry and it has the weight of

centuries to support it. However, in tensor calculus it is quite a modern

idea which has won acceptance only over the last thirty years. The situation

is well illustrated by the familiar question: What is a tensor? The
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relativist responds that it is an entity whose components transform in a

particular way under a change of coordinates. However, the absolutist replies

that such an answer merely describes a Iopert!) possessed by the components of

a tensor and it says nothing per se about what a tensor really is. The

absolutist answer is that a tensor is an element in the tensor product of

vector spaces, or, more generally, the tensor product of free modules of

finite rank over an arbitrary commutative ring. This abstract answer is of a

fairly recent vintage, and a full exposition of it was given only in 1948 by

the Bourbakis in their ttments de mathematique, Livre II, Algebre Chapitre 3.

It took twenty years for it to become common knowledge in the mathematical

community, and, in more recent times, by people working in mathematical and

theoretical physics.

Hence, we maintain that Marussi used and thought in terms of the

homographic calculus and his provisional tensor theory simply because they

were the on?! absolutist formalisms available to him! In essence, he

anticipated -- without knowing the details -- the modern so-called

'coordinate-free' approach to differential geometry and tensors. Thus, in

retrospect, his intuitive and aesthetic feeling of how the mathematics should

be done is vindicated although it is unlikely that he ever comprehended the

level of abstraction on which the final answer would be given. Our contention

that he employed mathematical methods which he regarded as provisional but on

the right track also explains why his work shows virtually no influence of the

relativist tensorial methods employed by Hotine. We believe that after

outlining his basic approach, he did little to change his methodology.

Indeed, his Erice lectures of 1974, [9], differ only slightly in their

mathematical content from his earlier work [6]-[8J, and in his last major

paper, [10], he reverted to the homographic calculus as contained in (7].

Marussi had a deep and intuitive understanding of mathematical ideas which
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were strictly speaking beyond his grasp. But this is the true mark of genius

in a physical scientist, and one shared with Newton, Maxwell, Einstein, and

Dirac.

The question now is: How does Marussi's bold and beautiful conception of

intrinsic geodesy stand today? In our view only one crucial question remains

unanswered, and on its answer turns the entire mathematical structure of the

theory. This question is simply whether an adequate supply of intrinsic

coordinates actually exists. we will call the assertion of their existence

the Mar-ussi Hypothesis, and for purposes of discussion it is useful to

delineate two forms of this hypothesis:

The Strorig Form: All geofeCtic pr'obl ems cart he posed ini terms of

irttrintsic coordinates,

The Weaz Form: Some geode tic" problerms cot he posed in terms of

intiirlsic coordiraotes.

The Strong Form states that coordinates are the appropriate manner of

formulating mathematical geodesy, while the Weak Form asserts that coordinates

may not be available. An alternate version of the Weak Form addresses the

problem of determining under what circumstances coordinates do exist. The

truth of the Strong Form would imply that the relativist form of tensor

calculus is the appropriate mathematical formalism, whereas the truth of the

Weak Form would lead us to differential forms or the leg calculus of

Grafarend.

Only partial results relative to the general validity of the Marussi

Hypothesis are known. First, we note that although it must have been of

concern to him, Marussi never discussed it in his work. Moreover, for the

most part the only intrinsic coordinate system which he considered was the

local astronomical system (1P, , W) in which 4' and N are the

astronomical latitude and longitude respectively, and W is the geopotential
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function.

The discovery of non-holonomic coordinate/reference systems by E.

Grafarend (1971) and N. Grossman (1974) show that the Strong Form of the

Marussi Hypothesis is untenable. Grafarend discussed his discovery with

Marussi and was amazed at how quickly he understood and accepted this rather

unexpected classical result. Later in [10], Marussi himself employed a

non-holonomic reference system. The situation is thus reduced to considering

the Weak Form of the Marussi Hypothesis and essentially consists in inquiring

whether in general one should expect to have intrinsic coordinates available.

In other words, do intrinsic coordinates usually exist, or are they scarce in

the sense that they occur only in very special situations? This question is

non-trivial in that it requires an amalgamation of both mathematical and

physical ideas. Mathematically the coordinates must exist not only at a

point, but on a domain (i.e. an open connected subset) which is large enough

to be useful, while physically they must be susceptible of measurement.

Moreover, requirements must be consistent with each other in that neither, n

prior! , excludes the possibility of the other being satisfied. Borrowing the

terminology introduced by J. Hadamard in his profound study of the Cauchy

Problem, we may say that the Marussi Hypothesis requires that our

coordinate/leg systems be hi,, pose both mathematically and physically. Since

one can imagine different physical situations occurring in a single

coordinate/leg system, only the mathematical part of the requirement is

unambiguous: if the coordinate/leg system does not exist mathematically, then

there is no possibility of doing any geodesy in it.

If it ultimately turns out that only the weak Form of the Marussi

Hypothesis is viable -- and there are strong hints that this will be the case

-- then intrinsic geodesy must be subsumed into differential geodesy, and our

classical preoccupation of thinking in terms of coordinates must be abandoned
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as a chimera. We must then seek a mathematical formalism which efficiently

deals with non-holonomic reference systems. This by no means diminishes the

value of Marussi's vision of a new geodesy, anymore than Lagrangian or

Hamiltonian dynamics diminishes Newtonian dynamics. It merely translates it

into a new and challenging form.

In conclusion, Marussi has left to us as a legacy an exciting formulation

of geodesy. He sketched the broad and bold outlines of a theory which demands

that we re-think the tenets of classical geodesy in terms of new mathematical

tools. Indeed, as Sir Alan Cook wrote in [1],

"Antonio Marussi left us thinking about the gravity field of the

Earth and of geodesy in ways very different from those he found."

Just as his work challenged traditional geodetic thinking, his achievements

challenge us to complete his vision of a new geodesy. In the concluding words

of his inaugural lecture [11] at the first Symposium on Three-Dimensional

Geodesy (Venezia, 1959) he said

"The cycle closes on itself and is renewed and reveals to our eyes

new and distant horizons, which it will be our task to explore."

we can best honor his memory by completing, perfecting, and refining his

ideas.
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